1. If $\sqrt[3]{4-3 x}=3$, what is the value x ?
(A) -8.23
(B) -7.67
(C) -1.75
(D) 0.92
(E) 8.23
2. If $f(a, b)=\frac{a+b}{2}$, which of the following is equal to $f(4,8)$?
(A) $f(0,6)$
(B) $f(1,6)$
(C) $f(2,4)$
(D) $f(2,16)$
(E) $f(3,9)$
3. $\frac{6!}{3!5!}=$
(A) 60
(B) 24
(C) 6
(D) 1
(E) $\frac{1}{60}$
4. The graph of which of the following equations has a slope of $\frac{1}{2}$?
(A) $y=\frac{1}{2}$
(B) $y=2 x$
(C) $y=2 x+1$
(D) $y=x+\frac{1}{2}$
(E) $y=\frac{x}{2}+1$
5. If $f(x)=x+\sqrt{x}$ and $g(x)=f(f(x))$, then $g(1.7)=$
(A) 1.7
(B) 3.0
(C) 4.7
(D) 6.9
(E) 9.0
6. For all $m \neq 0, \frac{1-\frac{1}{m}}{\frac{1}{m}}=$
(A) 1
(B) $m-1$
(C) $\frac{m-1}{m}$
(D) $\frac{1-m}{m}$
(E) $m-\frac{1}{m}$
7. The graph of $y=b x-1$ has points in the first quadrant if and only if
(A) $b \neq 0$
(B) $b<-1$
(C) $-1<b<1$
(D) $0<b<1$
(E) $b>0$
8. If $\tan x=5$, then $\frac{\tan x}{\cot x}=$
(A) 1
(B) $\frac{1}{5}$
(C) 5
(D) 10
(E) 25
9. If $\frac{a+b c}{w e+f}=g$ and if $e \cdot f \cdot g \neq 0$, which of the following is equal to w ?
(A) $\frac{a+b c-f g}{e g}$
(B) $\frac{a+b c-g}{e}$
(C) $\frac{a-b c+f g}{e g}$
(D) $\frac{a+b c-f}{e g}$
(E) $\frac{a+b c-e g}{f g}$
10. If the probability of a certain event occuring is $\frac{4}{9}$, what is the probability of this event not occurring?
(A) $\frac{4}{13}$
(B) $\frac{4}{9}$
(C) $\frac{5}{9}$
(D) $\frac{9}{13}$
(E) $\frac{9}{4}$
11. If $x^{4}-19=19$ and $x \geqq 0$, then $x=$
(A) 0
(B) 2.08
(C) 2.48
(D) 4.36
(E) 6.16
12. In Figure 1, if $\theta=38^{\circ}$, what is the value of t ?
(A) 0.15
(B) 0.20
(C) 2.46
(D) 3.13
(E) 3.15

Figure 1
13. Joe has a test average of 87 in math. If his test average makes up 70 percent of his overall grade and the final exam makes up the remaining 30%, what must be his final exam score to give him an overall grade of exactly 90 ?
(A) 91
(B) 93
(C) 95
(D) 97
(E) 99
14. An operation is defined on pairs of integers by $(a, b) \nabla(c, e)=(a-c, b-e)$. If $[(1,2) \nabla(-3,6)] \nabla(x, y)=(1,1)$, then $(x, y)=$
(A) $(5,-5)$
(B) $(3,-7)$
(C) $(3,-5)$
(D) $(3,5)$
(E) $(-3,5)$
15. If $\cos t=\frac{5}{6}$, what is the value of $\cos 2 t$?
(A) 0.92
(B) 0.39
(C) 0.28
(D) 0.15
(E) -0.83
16. Which of the following is a zero of $f(x)=2 x^{2}-3 x-1$?
(A) -1.00
(B) 0.28
(C) 0.50
(D) 1.78
(E) 3.56
17. What is the number of digits in the number obtained by multiplying $12,121,212$ by 3,579 ?
(A) 4
(B) 9
(C) 10
(D) 11
(E) 12
18. If $\log _{x} 3=9$, then $x=$
(A) 0.50
(B) 1.13
(C) 1.22
(D) 2.00
(E) 2.08
19. Which of the following is a point at which the ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{15}=1$ intersects the x -axis?
(A) $(2.2,0)$
(B) $(3.9,0)$
(C) $(4.5,0)$
(D) $(5.0,0)$
(E) $(15.0,0)$
20. The function f is given by $f(x)=x-[x]$, where $[x]$ is defined to be the greatest integer that is less than or equal to x. If $1 \leqq x<2$, then f is also given by $f(x)=$?
(A) $x-2$
(B) $x-1$
(C) x
(D) $x+1$
(E) $x+2$
21. In Figure 2, $r \sin \theta=$
(A) x
(B) y
(C) $\frac{x}{y}$
(D) $\frac{y}{x}$
(E) $x+y$

Figure 2
22. What is the remainder when $2 x^{4}-3 x^{2}-x+3$ is divided by $x+1 ?$
(A) -3
(B) -1
(C) 1
(D) 2
(E) 3
23. In Figure 3, what is the length of segment AC?
(A) 4.47
(B) 5.00
(C) 5.39
(D) 6.23
(E) 9.00

Figure 3
24. What is a value of $\cos (\arcsin 0.90) ? ?$
(A) 0.44
(B) 0.58
(C) 0.67
(D) 0.71
(E) 0.90
25. What is the area of a triangle whose vertices are $(\sqrt{2}, 0)$, $(2, \sqrt{10})$, and $(5,0)$?
(A) 3.59
(B) 5.67
(C) 7.91
(D) 11.18
(E) 11.34
26. If $x=\sqrt{t}-1$ and $y=t^{2}$, what is y in terms of x ?
(A) $(x+1)^{4}$
(B) $(x-1)^{4}$
(C) $(x+1)^{2}$
(D) $(x-1)^{2}$
(E) $x^{2}+1$
27. what is the maximum value of $f(x)=4-(x-1)^{2}$?
(A) 1
(B) 3
(C) 4
(D) 5
(E) 16
28. If a certain product now worth $\$ 450$ increases in value at the rate of 8 percent per year, how much will it be worth 6 years from now?
(A) $\$ 630$
(B) $\$ 661$
(C) $\$ 666$
(D) $\$ 714$
(E) $\$ 771$
29. The $1^{\text {st }}$ term of an arithmetic sequence is 3 and the $5^{\text {th }}$ term is 17 . What is the $150^{\text {th }}$ term of the sequce?
(A) 420.2
(B) 521.5
(C) 528.0
(D) 524.5
(E) 698.3
30. The cosine of an angle is one-half the sine of the same angle. What is the tangent of this angle?
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) 2
(E) It cannot be determined from the information given.
31. The graph in Figure 4 could be a portion of the graph of which of the following functions?
(A) I only
(B) II only
(C) III only
(D) II and III only
(E) I, II, and III.
I. $f(x)=x^{3}+a x^{2}+b x+c$
II. $g(x)=x^{5}+a x^{3}+b x+c$
III. $h(x)=x^{7}+a x^{6}+b x^{5}+c x^{4}+d x^{3}+e x^{2}+f x+g$
32. A right circular cylinder has radius 3 and height 3 . If A and B are two points on its surface, what is the maximum straight-line distance between A and B?
(A) $3 \sqrt{6}$
(B) $3 \sqrt{5}$
(C) 6
(D) $3 \sqrt{3}$
(E) $3 \sqrt{2}$
33. What is the degree measure of the smallest positive angle θ for which $6 \sin ^{2} \theta-\sin \theta-2=0$?
(A) 9.6°
(B) 19.5°
(C) 30°
(D) 41.8°
(E) 90°
34. The graph of $x^{2}-y^{2}-2 x-4 y-4=0$ is a hyperbola centered at
(A) $(-1,-2)$
(B) $(-1,2)$
(C) $(1,-2)$
(D) $(1,2)$
(E) $(2,1)$
35. Which of the following could be a portion of the graph of $f(x)=\frac{e^{x}+e^{-x}}{2} ?$
(A)

(B)

(C)

(D)

(E)

36. If $\frac{p}{r}$ is an integer, which of the following must also be an integer?
(A) $p-r$
(B) $p+2 r$
(C) $\frac{r}{p}$
(D) $p r$
(E) $\frac{2 p}{r}$
37. A function " f " has the property that whenever $x_{2}>x_{1}$, then $f\left(x_{2}\right) \geqq f\left(x_{1}\right)$. Which of the following could be the graph of " f "?
(A)

(B)

(C)

(D)

(E)

38. The two circles $x^{2}+y^{2}=1$ and $(x-\sqrt{2})^{2}+(y-\sqrt{2})^{2}=1$ are tangent to each other. What are the coordinates of the point of tangency?
(A) $(0,0.71)$
(B) $(0.5,0.5)$
(C) $(0.71,0)$
(D) $(0.71,0.71)$
(E) $(1.41,1.41)$
39. What is $\lim _{x \rightarrow-2} \frac{\left(2 x^{2}+3 x-2\right)}{x^{2}-4}$?
(A) 1.25
(B) 1.0
(C) 0.5
(D) 0
(E) The limit does not exist.
40. A function f is an even function if, for all values of x in the domain, $f(-x)=f(x)$, which of the following is an even function?
(A) $f(x)=2^{x}$
(B) $f(x)=x^{2}+x$
(C) $f(x)=x$
(D) $f(x)=\sin x$
(E) $f(x)=\cos x$
41. Two cars start from the same point P and travel along separate straight highways. If these two highways originate at P_{0} forming an anlge of 80°, how many miles apart are the two cars after each has traveled 110 miles?
(A) 86
(B) 141
(C) 156
(D) 191
(E) 220
42. The shaded portion in Figure 5 shows the graph of
(A) $\left(y-\frac{1}{2} x\right)(y+x) \geqq 0$
(B) $(y-2 x)(y+x) \leqq 0$
(C) $(y-2 x)(y+x) \geqq 0$
(D) $(y+2 x)(y-x) \leqq 0$
(E) $(y+2 x)(y-x) \geqq 0$

Figure 5
43. If $f(n)=\frac{1}{e^{n}}$, what is the least integer n such that $f(n)<0.0001 ?$
(A) 9
(B) 10
(C) 11
(D) 12
(E) 13
44. In right $\triangle A B C$ in Figure $6, \frac{\sin A+\cos B}{\cos B}$ is equal to which of the following?
(A) 2
(B) $\frac{a+c}{c}$
(C) $\frac{2 a}{b}$
(D) $\frac{2 b}{c}$
(E) $\frac{2 a}{c}$
45. What is the volume, in cubic centimeters, of a rectangular solid that has faces with areas 2,4 , and 8 square centimeters?
(A) 128
(B) 64
(C) 32
(D) 16
(E) 8
46. For every positive number t, a function f_{t} is defined by

$$
f_{t}(x)= \begin{cases}1 & , x<0 \\ 1-\left(\frac{1}{t}\right) x, & 0 \leqq x<t \\ 0 & , x>t\end{cases}
$$

If $t>5$, then $f_{t}(2)=$
(A) 0
(B) 1
(C) $\frac{5-t}{t}$
(D) $\frac{t+5}{t}$
(E) $\frac{t-2}{t}$

Figure 6
47. In Figure 7, $A B C D E$ is a regular pentagon with side of length 2 , what is the x-coordinate of D ?
(A) 2.62
(B) 3.62
(C) 3.73
(D) 3.90
(E) 4.90
48. If f is the function with domain $[0,12]$ and range $[0,1]$ whose graph is the line segment shown in Figure 8, what is $f^{-1}(0.4) ?$
(A) 30
(B) 4.8
(C) 2.5
(D) 0.25
(E) 0.033

Figure 7

Figure 8
49. What does $|3+5 i|$ equal?
(A) 0.80
(B) 1.67
(C) 3.97
(D) 5.83
(E) 8.00
50. A committee of 3 math majors and 4 history majors is to be chosen from a group of 20 math majors and 16 history majors, respectively. How many different committees can be formed?
(A) 12
(B) 320
(C) 2,960
(D) $2,074,800$
(E) 2.86×10^{15}

